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Abstract. Using the closed orbit theory, we give a clear physical picture description of the photodetachment
of H− in parallel electric and magnetic fields near an elastic surface. It is found that the surface can produce
some interesting effects. Besides the closed orbits previously found by Peters et al. for the H− in parallel
electric and magnetic fields, some additional closed orbits are produced due to the effect of the elastic
surface. The photodetachment cross section of this system is also derived and calculated. The results
show that the cross section depends on the external field strength and the ion-surface distance, which is
more complicated in contrast with the cross section of H− in parallel electric and magnetic fields without
surface. Therefore we can control the photodetachment cross section of the negative ion by changing
the external field strength and the ion-surface distance. This study provides a new understanding of the
photodetachment process of negative ion in the presence of external field and surface.

PACS. 32.80.Gc Photodetachment of atomic negative ions – 03.65.Sq Semiclassical theories and applica-
tions – 34.50.Dy Interactions of atoms and molecules with surfaces

1 Introduction

It is well-known that the environment such as poten-
tial walls or cavities might have significant effect on the
photodetachment cross section of ions and the photoab-
sorption spectra of atoms. Early experiment and theory
showed that the photodetachment cross section of H− in
the presence of external fields displays oscillatory struc-
tures [1–10]. In early 1979, Blumberg et al. studied the
photodetachment of negative ions in a magnetic field, they
found the cross section of negative ions in magnetic field
was shown to have an oscillatory dependence on photon
energy [6]. Later, Bryant et al. observed a ripplelike struc-
ture in the photodetachment cross section of H− in the
presence of motional electric fields [1]. Rau and Wong
explained this phenomenon using a frame-transformation
theory [2]. Stewart analyzed the effects of electric fields
on the photodetachment cross section of the H− ion near
threshold [10]. In these early studies, they all considered
the photodetachment of negative ion in a single electric or
magnetic field. Subsequently, many theoretical studies of
the photodetachment of H− in parallel or crossed electric
and magnetic fields have been carried out by Fabrikant [7],
Peters and Delos [3,4] and by other authors [8,9]. A gen-
eralization to the case of photodetachment of H− in the
presence of static electric and magnetic field of arbitrary
orientation has been given by Liu and Wang [5]. Among
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these studies, Du and Delos’ closed orbit theory has pro-
vided a clear framework to understand the oscillation in
the complicated spectra for atoms or negative ion in ex-
ternal fields [11]. They found that the oscillations were
caused by the interference of the detached-electron waves
reflected by the external fields and the outgoing detached-
electron waves localized in the regions of the bound state
of H−.

Recently, much attention has been paid to the photo-
induced electronic excitations of adsorbates on metal sur-
faces [12]. Since the H− has been proposed to use to
probe adsorbate state lifetime and charge transfer dur-
ing backscattering [13], the photodetachment of H− near
an interface has attracted much interest. Firstly, Yang
et al. used an elastic wall model for the electron scatter-
ing interface. They derived and calculated the photode-
tachment cross section of H− near an interface without
and with a static electric field by using the closed orbit
theory [14,15]. Then Afaq and Du discussed the photode-
tachment of H− near a reflecting interface using a theo-
retical imaging method [16]. In these early studies, they
all considered the photodetachment of negative ion near
a surface with or without electric field. To the best of our
knowledge, no study of the photodetachment of ion near
a surface in the presence of electric and magnetic fields
has been reported. However, there is a need to do this
study. With the development of photodetachment micro-
scope technology, it is possible to observe the spatial distri-
butions of detached-electron on a screen [17]. Theoretical
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investigations on the detached electron distributions on a
screen perpendicular to the parallel electric and magnetic
fields show structures resulting from the interference of
two distinctive electron paths [18,19]. Inspired by these
early works, we study the photodetachment of H− in par-
allel electric and magnetic fields with an elastic surface
perpendicular to the fields. For simplicity, we still con-
sider the surface as an elastic reflecting wall, which can be
seen as a dielectric film with the bottom of the conduction
band well above the vacuum level. This assumption about
the elastic wall is consistent with both experimental and
theoretical studies of the microjunctions in the semicon-
ductor device over the years [20–22]. Our study is based on
the closed orbit theory. We obtain an analytical expression
for the cross section as the sum of the contributions of the
closed orbits. The cross section is related to the strength of
the external fields and the distance between the ion and
the surface, which suggest that we can control the pho-
todetachment cross section by changing the external field
strength and the ion-surface distance. The results show
that due to the effect of the surface, the number of the
closed orbits increased greatly and the oscillations in the
photodetachment cross section become much more com-
plicated than the case of the photodetachment of H− in
parallel electric and magnetic fields without surface.

This paper is organized as follows: in Section 2, we
study the classical motion of the detached electron of H−
in parallel electric and magnetic fields near an elastic sur-
face and find out the closed orbits of this system. In Sec-
tion 3, we derive the photodetachment cross section of
H− in parallel electric and magnetic fields near an elastic
surface by using the closed orbit theory. In Section 4, we
calculate the cross section for different distances between
the ion and the surface and discuss the influence of the
external fields on the photodetachment cross section. Sec-
tion 5 gives some conclusions of this paper. Atomic units
are used throughout this work unless indicated otherwise.

2 The classical motion

Take the directions of the electric and magnetic fields as
the z-axis, a hydrogen negative ion H− sits at the origin
and a z-polarized laser is applied for the photodetach-
ment. An elastic surface perpendicular to z-axis is put at
z = −d. So the photodetachment electron can be reflected
by the external fields and the surface. The H− can be con-
sidered effectively as a one-electron system, with the active
electron loosely bound by a short-range, spherically sym-
metric potential Vb(r), where r is the distance between the
active electron and the origin where the nucleus is. In the
cylindrical coordinates (ρ, z, φ), the detached electron’s
Hamiltonian is (the electron spin is omitted):

H =
1
2

(
P 2

ρ +
L2

z

ρ2

)
+ ωLLz +

1
2
ω2

Lρ
2 +

1
2
P 2

z

+ Fz + V (z) + Vb(r). (1)

In which ωL = H/2c is the Larmor frequency, F and H
are the electric and magnetic field strengths. V (z) is the

interaction between the electron and the elastic surface, it
can be described as:

V (z) =

⎧⎨
⎩

0 − d < z < +∞
∞ z � −d .

Due to the cylindrical symmetry of the system, the canon-
ical angular momentum Lz is a constant of motion. In our
paper, the electron emerges from the center of the chosen
coordinate system, so we take it as zero. Therefore, the
Hamiltonian separates into the motion along the z-axis
and the motion in the perpendicular x− y plane. Accord-
ing to the closed orbit theory, we split the whole space
into two spatial regions: (1) the core region inside a small
sphere with the radius R ≈ 10a0 (a0 is the Bohr radius),
where the laser field and the core field influences exist,
while the external fields can be neglected; (2) the outer
region, where the influence of the external fields are more
important and the interaction between the active electron
and the residue of the ion can be neglected. In this area
the electron only feels the presence of electric and mag-
netic fields. Therefore, we can use semiclassically closed
orbit theory to describe the electron motion [11].

When the electron enters the outer region, the short-
range potential Vb(r) can be negligible. By solving the
Hamiltonian motion equations, we get the classical motion
equations of the detached electron [3]:

⎧⎪⎪⎨
⎪⎪⎩

ρ(t) = 1
ωL
k sin θout| sin(ωLt)|

z(t) = k cos θoutt− 1
2Ft

2

φ(t) = ωLt+ φout

(2)

where k =
√

2E is the momentum of the detached electron
and θout is the emanating angle between the momentum
and z-axis. From the motion equations, we find that the
z-motion is uniform acceleration, and the motion in ρ and
φ is a cyclotron motion. The azimuthal motion in φ(t) can
be neglected. Because the elastic surface is perpendicular
to the z-direction, it has no influence on the ρ motion.
According to the closed orbit theory, every classical orbit
of the detached electron that subsequently returns to the
ion produces an oscillation in the photodetachment cross
section. Considering the effect of the elastic surface, the
closed orbits can be divided into three classes.

(i) This class of the closed orbits is the same as the
ones of H− in parallel electric and magnetic fields without
surface [3]. The electron was emitted from the origin with
a certain initial momentum k and initial angle θout. For the
z-motion, the time required to go from z = 0 up against
the electric field force and then return to z = 0 is tzret =
2k cos θout/F . The motion in ρ is a sinusoidal oscillation
and represents cyclotron motion in the magnetic field. The
electron returns to ρ = 0 at each cyclotron period tρret =
jπ/ωL, j = 1, 2. . . is the number of the cyclotron period.
A closed orbit occurs whenever the electron goes out with
energy and direction of motion such that tzret = tρret. These
closed orbits are given in Figure 1a. In this part, we did not
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Fig. 1. (Color online) Schematic of the closed orbits of the
detached electron of H− in parallel electric and magnetic fields
near an elastic surface. The electric field and magnetic fields
are along the +z-axis. H− is denoted by a black dot at the
origin. The solid line at d = 3000 a.u. is the elastic sur-
face. Figure (a) are the closed orbits as the ones given in [3];
figure (b) are the parallel and off-z-axis closed orbits due to
the effect of the elastic surface, one closed orbit is indicated by
red arrows for clarity. The inset plot is the j = 3 closed orbit.

consider the parallel orbit, which is given in the following
part.

(ii) The parallel closed orbits along the z-axis. Sim-
ilar to the photodetachment of H− in electric field near
an elastic surface [15], there are four fundamental closed
orbits along the z-axis. (a) The electron goes up along
the +z-direction, reaches its maximum point, then pulls
back by the electric field and returns to the origin. (b)
The electron goes down in the −z-direction and hits the
surface, then bounces back and finally returns to the ori-
gin. (c) The electron completes the first orbit and then
passes through the origin, and continues to complete the
second orbit. (d) This orbit is similar to the one of (c) but
in reverse order, the electron completes the second orbit
first and then the first orbit. This kind of closed orbits is
given in Figure 1b as indicated by arrows.

The periods of these four fundamental closed orbits
are:

T1 =
2k
F
, T2 =

−2k + 2
√
k2 + 2Fd
F

,

T3 = T4 = T1 + T2 =
2
√
k2 + 2Fd
F

. (3)

The actions of these orbits are:

S1 =
4
√

2E3/2

3F

S2 =
1
12
F 2T 3

2 +
1
2
FkT 2

2 + k2T2

S3 = S4 = S1 + S2. (4)

Maslov indices of these orbits can be found by counting
the returning points [6], we have:

µ1 = µ2 = 1, µ3 = µ4 = 2. (5)

(iii) Off z-axis closed orbits. The electron emitted from the
origin with a certain initial angle θj , after traveling some
time, it reaches the surface perpendicular to the z-axis at
z = −d. This time tf can be calculated by using equa-
tion (2):

tf = (k cos θj +
√
k2 cos2 θj + 2Fd)/F. (6)

The ρ motion is the same as the cyclotron motion in the
magnetic field. The cyclotron period is Tc = π/ωL. When
tf = jTc (j = 1, 2...), ρ = 0, the detached-electron reaches
the z-axis and hits the surface. After bouncing back by the
surface, the direction of the electron’s velocity is changed.
Hence after the collision of the electron with the surface, it
will travel along the reverse direction as before it collides
with the surface. After the same time tf , it returns to the
origin and forms a closed orbit. Some of the closed orbits
are given in Figure 1b. In order to see this kind closed
orbit clearly, we indicated one closed orbit by red arrows.

For each of these closed orbits, the period is

Tj = 2tf = 2jπ/ωL. (7)

The initial angle is given by:

cos θj = −ωLd

jkπ
+

jFπ

2kωL
. (8)

The action is:

Sj =
1
12
F 2T 3

j − 1
2
FkT 2

j cos θj

+ k2Tj cos2 θj +
1
2
k2Tj sin2 θj. (9)

Maslov indices of these orbits can be found by counting the
number of the singular points such as focus and caustics
they pass through [11].
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3 The photodetachment cross section

The photodetached electron’s wave function satisfies the
Schrödinger equation with a source [23]:

[E −H(r, p)]ψd = Dψi (10)

where E is the energy of the detached electron, D is the
dipole operator: D = axx+ ayy + azz. For the linear po-
larized light along the z-axis, ax = ay = 0, az = 1. Then
the dipole operator D = Z. ψi is the initial wave func-
tion of H−. In the present study we take the one electron
approximation [24]. The initial wave function in config-
uration space is ψi(r) = Be−kbr/r = R(r)/

√
4π. Here

B = 0.31552 is a normalization constant. kb = 0.2355883,
which is related to the binding energy Eb of H− by
kb =

√
2Eb. When the dipole operator acts on the ini-

tial state, it produces a p wave. For the linear z-polarized
light,

|Dψi〉 = rR(r)χ(θ). (11)

Here χ(θ) = cos θ/
√

4π.

The physical solution of equation (10) requires only
outgoing wave be present at large r. Once we have
the wave function ψd of the detached electron satisfying
the correct outgoing boundary condition, the oscillator-
strength density can be calculated by using the closed-
orbit theory (COT). According to the COT, the photoab-
sorption cross section can be written as [11]

σ(E) = −4
c
(E + Eb)Im〈Dψi|Ĝ+|Dψi〉 (12)

where Ĝ+ is the outgoing Green function. |Dψi〉 can be
seen as a “source function”. The Green function propa-
gates these waves outward at fixed energy to become the
outgoing waves. Due to the effect of the external fields and
the elastic surface, these waves cannot propagate to infin-
ity; some of the waves are turned back by the external
fields or the surface and returned to the origin. The re-
turning waves overlap with |Dψi〉 to give the interference
pattern in the absorption spectrum.

According to closed orbit theory, the wave function ψd

can be separated into a direct part and a returning part:

ψd = Ĝ+
dir|Dψi〉 + Ĝ+

ret|Dψi〉 = (ψd)dir + (ψd)ret. (13)

Accordingly, the cross section has two parts

σ(E) = σ0(E) + σret(E) (14)

σ0(E) is the overlap integral of the direct part with the
source function, it is the smooth background term in the
cross section [15]:

σ0(E) =
16

√
2B2π2E3/2

3c(Eb + E)3
. (15)

The second part is the contribution of the returning wave:

σret(E) = −4Ep

c
Im〈Dψi|(ψd)ret〉. (16)

In which (ψd)ret represents the electron wave propagates
outward into the external region first, then is pulled back
by the external fields or reflected by the elastic surface and
finally returns to the vicinity of the ion along all closed-
orbits to interfere with the steady outgoing wave. It is a
sum over returning wave associated with all the closed-
orbit. At fairly large distances from the origin, the outgo-
ing wave can be written as [3]:

Ĝ+
dir|Dψi〉 ≈ 2ikIl=1(k)χ(θ)f (+)

out (kr). (17)

In which Il is the radial dipole integral and f
(+)
out (kr) =

eikr/kr.
In order to obtain the returning wave function associ-

ated with each closed orbit, we draw a sphere of radius R,
R ≈ 10a0. Outside this region, the atomic field strength
is very small compared to the external fields and can be
neglected. The outgoing wave on the surface of this sphere
is then:

ψ0(r) = (Ĝ+
dir |Dψi〉)r=R. (18)

When this wave propagates out from the surface and trav-
els along the closed orbit, it changes phase and amplitude.
In the semiclassical approximation, the wave outside this
sphere is a sum of the above outgoing waves:

ψ(r) =
∑

i

ψ0(r)Aie
i[Si−µiπ/2] (19)

where Si is the action along the ith trajectory, µi is the
Maslov index characterizing the geometrical properties of
the ith trajectory and Ai is the amplitude [11].

If there are no external fields or elastic interface, the
detached electron wave will propagate away from the
source region near the nucleus as a spherical wave and
never returns. But when there are external fields or elas-
tic interface, the outgoing waves cannot propagate freely,
some of the associated waves will turn back by the ex-
ternal fields or the surface. The returning wave function
associated with each returning trajectory evaluated on the
sphere with the radius rret is given by

ψj
ret(r) = 2ikIl=1(k)χ(θj

out)f
(+)
out (krout)

×
∣∣∣∣ Jj(t0)
Jj(tret)

∣∣∣∣
1/2

ei[Sj(tret)−µjπ/2] (20)

where J(t) = |∂(x, y, z)/∂(t, θ, ϕ)| = ρ(t) |∂(ρ, z)/∂(t, θ)|
is the three-dimensional Jacobian at time t, which is re-
lated to the classical propagation amplitude Aj by Aj =
|Jj(t0)/Jj(tret)|1/2 [11].

For the parallel electric and magnetic fields, due to the
cylindrically symmetry, the returning wave near the origin
can be approximated by a Bessel function:

fret(ρ, z) ≈ 1√
2π
J0(kret

ρ ρ)
1√
2π
eikret

z z (21)

in which J0(kret
ρ ρ) is the zero-order Bessel function.
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The incoming part of fret(ρ, z) must match the semi-
classical returning wave:

ψj
ret(r) ≈ Njf

(−)j
ret (ρ, z) (22)

Nj is a normalization factor:

Nj = 2ikIl=1(k)χ(θj
out)Rje

i[Sj(tret)−φj−µjπ/2] (23)

Rj involves the ratio of Jacobians at t = t0 and t = tret

and the outgoing and returning quantum waves [3]:

Rj =

∣∣∣∣∣
f

(+)j
out

f
(−)j
ret

∣∣∣∣∣
∣∣∣∣ Jj(t0)
Jj(tret)

∣∣∣∣
1/2

. (24)

Considering the influence of the surface, the closed orbits
in this system include three classes, therefore this ratio
must be considered separately.

For the first class of the closed orbits, Rj is the same
as the one given by Peters et al. except the parallel orbits.
It is given by [3]:

Rj = 2π
(ωL

E

)1/2

j−1/2. (25)

Here j =1, 2, 3... denotes the number of the closed orbit.
Next, we consider the parallel closed orbit along the z-

axis. Since ρ (t) equals zero for all the time, the Bessel
function in equation (21) should be equal to one, and
the returning wave is approximated by a plane wave di-
rected along the z-axis, f (−)j

ret = e±ikz/2π. The Jacobians
at t = t0 and t = tret = Tj are given by:

Jj(t0) =
√

2Er20 sin(θj
out) (26)

Jj(tret) =
1
ωL

√
2E sin(θj

out) sin(ωLTj)
2E
ωL

× [1 + (−1)j F√
2E

Tj] sin(ωLTj). (27)

Substituting the above equations into equation (24), Rj is
then given by

Rj =
2π
k

ωL

sin(ωLTj)
1

|[k2 + (−1)jFkTj]|1/2
(28)

here, j = 1, 2, 3, 4 and Tj is given by equation (3).
For the third kind closed orbits, f (+)j

out , f (−)j
ret and Jj(t0)

are the same as the first kind closed orbit [3], but with a
different Jj(tret). The derivation of Jj(tret) is still valid
as the first kind closed orbits but with a different period,
which is Tj = 2jπ/ωL. After a lengthy derivation, we find
that Rj is the same as given in equation (25).

The whole returning waves are the sum of each return-
ing wave:

(ψd)ret =
∑

j

ψret
j . (29)

The overlap integral of the returning waves with the source
wave function 〈Dψi| gives the oscillation in the photode-
tachment cross section. Since the closed orbits are split

into three classes, then σret(E) can be divided into three
parts:

σret(E) = σret
1 (E) + σret

2 (E) + σret
3 (E) (30)

σret
1 (E) corresponds to the contribution of the first kind

of the closed orbits, which is the same as given in [3]:

σret
1 (E) = −6σ0

jmax∑
j=1

|Rj |χ(θj
out)χ

∗(θj
ret)

× sin(Sj − φj − µjπ/2). (31)

Here Rj is given by equation (25), φj = π/4, jmax =
int[2kωL/πF ], µj is given in [3].

σret
2 (E) corresponds to the contribution of the parallel

closed orbits:

σret
2 (E) = (−1)µj−1 3

2π
σ0

4∑
j=1

|Rj | sin(Sj − µjπ/2). (32)

In which Rj is defined by equation (28), Sj and µj are
given by equations (4) and (5) separately.

σret
3 (E) is the same as σret

1 (E) but with different
parameters. In this formula, θj

out, Sj , Rj are given by
equations (8), (9) and (25), and jmax is determined by
equation (8), which is:

jmax = int

[
ωL(k +

√
k2 + 2Fd)
πF

]
. (33)

Therefore, the total photodetachment cross section is

σ(E) = σ0(E) + σret
1 (E) + σret

2 (E) + σret
3 (E) (34)

which is a smooth background term plus many sinusoidal
oscillatory terms.

4 Results and discussions

Using equation (34), we calculated the photodetachment
cross section of H− in parallel electric and magnetic fields
near an elastic surface for different values of the distance
between the ion and the surface and different external field
strength, see Figures 2–4.

In our calculation, the detached electron’s energy is
varied between 0 and 0.4 eV and we only consider the
contribution of the primitive closed orbits to the cross
section, the repetitions of the closed orbits are neglected.
In Figure 2, we keep the electric field F = 100 V/cm, the
magnetic field B = 2.0 T, then we change the distance
between the ion and the surface. From this figure, we can
see how the pattern of the photodetachment cross section
changes with the increasing distance between the ion and
the elastic surface. Figure 2a is the photodetachment cross
section of H− in parallel electric and magnetic fields with-
out surface, which is plotted for comparison [3]. Actually,
when the distance is very large, d → +∞, the third class
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Fig. 2. The photodetachment
cross section of H− in paral-
lel electric and magnetic fields
near an elastic surface. The elec-
tric field F = 100 V/cm and
the magnetic field H = 2.0 T.
The distances between the H−

and the surface are: (a) d →
+∞, this case equals to the
photodetachment cross section
of H− in parallel electric and
magnetic fields without elastic
surface, the inset plot is the
cross section near the detach-
ment threshold [3]. (b) d =
7000 a.u.; (c) d = 300 a.u.; (d)
d = 200 a.u.

of the closed orbit and some of the parallel orbit no longer
exist, therefore the present system should recover to the
case of the photodetachment of H− in parallel electric and
magnetic fields. When d = 7000 a.u., the cross section is
shown in Figure 2b. We found that the spectrum changed
a little from the one without surface. As we put the sur-
face closer to the ion, the influence of the surface becomes
significant. Figure 2c plots the cross section when the sur-
face is 300 a.u. from the ion, we can see the cross section
changes greatly from Figure 2a. If the surface approaches
the ion further, the oscillations in the cross section be-
come much more complicated, see Figure 2d. The reasons
are as follows: the closer the surface moves to the ion, the
more the returning waves bounced back by this surface,
therefore, their contribution to the cross section becomes
greater. In Figure 2, some irregular peaks appear. For ex-
ample, in Figure 2a, there are sharp peaks at 0.9 eV and
0.97 eV. They are caused by the bifurcation of the closed
orbits [3]. In fact, semiclassical theory predicts that the re-
currence amplitude diverges at every bifurcation. Because
a bifurcation is correlated with a focus of classical orbits,
which lead to vanishing denominators in the cross section
of σret

2 (E). As to this problem, we will modify it by using
the uniform semiclassical approximation in the following
paper [25].

Next, we show how the electric and magnetic field
influences the photodetachment cross section for fixed
distance between the ion and the surface. We choose
d = 200 a.u. as the ion-surface distance, since this distance
is 10.6 nm and is quite typical in surface physics and cav-
ity quantum dynamics. If both the electric and magnetic
fields are present, the pattern of the spectrum changes as

the relative strength of the two fields varies. The relative
strength of the two fields is defined as: R = F 2/3/2ωL.
If R < 1, the magnetic field dominates, the spectrum is
characterized by the broad Landau envelope. But if R > 1,
the electric field dominates and the spectrum is similar to
the pattern in the presence of only the electric field [10].
Firstly, we keep F = 100 V/cm, then we change the mag-
netic field from 4.7 T to 10−6 T, see Figure 3. Figure 3a
is the cross section when H = 4.7 T, under this condi-
tion, R = 0.362 is small than 1. The lorentz force acting
on the detached electron is very strong. As the electron
moves in the external fields, the cyclotron period in the ρ
motion tρret = jπ/ωL is small. Then after a short period
of time, the electron is turned back by the magnetic field
and the elastic surface to the origin. Under this condition,
the number of the closed orbit is great and the oscilla-
tion in the cross section is much more complicated. The
broad Landau level envelope dominates the whole pattern
of the spectrum. With the decrease of the magnetic field,
the relative strength of the two fields R > 1, the electric
field force dominates. The lorentz force is weak and the
number of the closed orbit decreased. Thus the oscillation
in the cross section becomes weaker, as we can see from
Figures 3b and 3c. The whole pattern of the cross sec-
tion looks like the one in the presence of only the electric
field, the Landau resonances are nearly washed out by the
electric field [15]. When the magnetic field is very small,
for example H = 10−6 T, in atomic unit, this number is
very small and can be considered as zero. Then the influ-
ence of the magnetic field can be neglected. The present
system recovers to the photodetachment of H− in electric
field near an elastic surface. Only the closed orbits along
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Fig. 3. The dependence of the
photodetachment cross section
on the magnetic field. The elec-
tric field F = 100 V/cm and the
surface is fixed at d = 200 a.u.
The magnetic fields are: (a) H =
4.7 T; (b) H = 1.0 T; (c) H =
0.1 T; (d) H → 0.

Fig. 4. The dependence of the photodetachment cross section on the electric field as H → 0. (a) F = 200 KV/cm, d = 300 a.u.,
the solid line is our result and the dashed line is the one given in [15], which equals to the photodetachment cross section of H−

in electric field near an elastic interface. (b) The photodetachment cross section with F = 1 V/cm, d = 100 a.u. The solid line
is our calculation result and the dashed line is the result by using the imaging method [16].

the z-axis exist. Since F = 100 V/cm, this number is still
small in atomic unit, its influence on the cross section is
very small. The oscillations in the cross section is simi-
lar to the photodetachment of H− near an elastic surface
without electric field [14], see Figure 3d.

In order to compare our result with the one given be-
fore, we consider two limit cases. First, we choose F =
200 kV/cm, the ion-surface distance d = 300 a.u., then
we let H → 0. The calculation result is shown in Fig-
ure 4a. The solid line in this plot is our result and the
dashed line is the result given by Yang et al. [15], they are
nearly the same. In fact, when H → 0, the Rj in equa-
tion (25) becomes zero, then σret

1 (E) and σret
3 (E) in the

cross section vanished. Rj in equation (28) becomes:

Rj =
2π
k

1
Tj |[k2 + (−1)jFkTj]|1/2

. (35)

And the total photodetachment cross section becomes:

σ(E) = σ0(E) + (−1)µj−1 3
k
σ0

×
4∑

j=1

1
Tj |[k2 + (−1)jFkTj ]|1/2

sin(Sj − µjπ/2). (36)

This is the photodetachment cross section of the H− in
electric field near an elastic interface [15], only the parallel
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Table 1. The period (in unit of Tc) and boundary energy Eb (in unit of cm−1) of the first and third kind closed orbit with the
electric field F = 100 V/cm, the magnetic field H = 2.0 T, and the distance between the ion and the surface d = 200 a.u. The
first kind orbit is denoted by I in the superscript while the third kind orbit denoted by III.

j 1 2 3 4 5 6 7 8 9

EI
bj 5.65 22.64 50.93 90.55 141.49 203.75 277.33 362.22 458.44

T I
j 1 2 3 4 5 6 7 8 9

EIII
bj 5.24 22.21 50.51 90.13 141.06 203.32 276.90 361.80 458.01

T III
j 2 4 6 8 10 12 14 16 18

closed orbits contribute to the cross section under this con-
dition. In Figure 4b we calculate the cross section with
F = 100 V/cm, d = 100 a.u., H → 0 by using our formula
and the one given by Afraq and Du [16], they are corre-
spondence with each other, which suggest our calculation
is correct.

Finally, we discuss the variation of the electron’s max-
imum kinetic energy Emax

f with the number of the closed
orbits. The energy at which a new closed orbit appears is
called the boundary energy Eb [3]. For the first kind closed
orbit, the boundary energy is given by EI

bj = 1
2 ( jFπ

2ωl
)2;

while for the third kind closed orbit,EIII
bj = 1

2 ( jFπ
2ωl

− dωl

jπ )2.
In Table 1, we give some of the period, the boundary en-
ergy Eb of the first and third kind closed orbit with the
electric field F = 100 V/cm, the magnetic field H = 2.0 T,
and the distance from the ion to the surface d = 200 a.u.
In Figure 5, we plot the variation of the electron’s maxi-
mum kinetic energy with the number of the closed orbits.
From this figure, we find as the electron’s energy is very
small, there are only 4 closed orbits, which are the ones
along the z-axis. As the energy increased to 5.24 cm−1, the
first off z-axis orbit appears, which belongs to the third
kind closed orbit. There are altogether 5 closed orbits. As
Emax

f increased to 5.65 cm−1, another off z-axis orbit ap-
pears, which belongs to the first kind closed orbit. There
are altogether 6 closed orbits. With the increase of Emax

f ,
the number of the closed increased greatly. As Emax

f in-
creased to 460 cm−1, there are 22 closed orbits. The more
the closed orbits, the more complicated oscillation in the
cross section. As we can see from Figures 2–4.

5 Conclusion

In summary, we have studied the photodetachment of
H− in parallel electric and magnetic field near an elas-
tic surface by using the closed orbit theory. We find that
the elastic surface has significant influence on the pho-
todetachment process, it produces some interesting phe-
nomenon. Considering the influence of the elastic surface,
the number of the closed orbits is increased greatly and the
oscillations in the photodetachment cross section become
much more complicated in contrast with none surface ex-
ists. This study provides a general framework for the un-
derstanding of the photodetachment process of H− in the
presence of external field and surface. In this paper, we
consider the surface as an elastic wall, this is only a sim-

Fig. 5. The variation of the electron’s maximum kinetic energy
with the number of the closed orbits.

ple model. As to the metal interface, the method we used
in this paper cannot be directly applied to these real sys-
tems, but a generalization of our semiclassical method to a
more elaborate system is straightforward once an accurate
potential between the ion and metal surface is available.
The theoretical calculation and analysis of the photode-
tachment of ion near a metal surface is in progress. In the
next work, we will carry out the quantum calculation and
compare our semiclassical closed orbit theory result with
the quantum result. At present, no experiments on this
system are available for comparison. We hope that our
results will be useful in guiding the future experimental
research of the photodetachment processes of ions in the
vicinity of interfaces, cavities and ion traps [26].
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